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Abstract: We show that if there exists a special kind of Born-Infeld type scalar field,

then one can send information from inside a black hole. This information is encoded in

perturbations of the field propagating in non-trivial scalar field backgrounds, which serves

as a ”new ether”. Although the theory is Lorentz-invariant it allows, nevertheless, the

superluminal propagation of perturbations with respect to the ”new ether”. We found the

stationary solution for background, which describes the accretion of the scalar field onto

a black hole. Examining the propagation of small perturbations around this solution we

show the signals emitted inside the horizon can reach an observer located outside the black

hole. We discuss possible physical consequences of this result.
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1. Introduction

During last years the scalar fields, described by the Lagrangians with a non-standard kinetic

term, attracted a considerable interest. Such structures are rather common for effective

fields theories. In cosmology they were first introduced in the context of k-inflation [1] and

then the k-essence models were suggested for solving the cosmic coincidence problem [2].

Tachyon matter [3], ghost condensate [4] and phantom [5] can be thought as the further

developments of this idea.

In some cases Lorentz invariant theories with nonlinear kinetic terms allow the su-

perluminal propagation of perturbations on dynamical backgrounds and this may have

interesting applications in cosmology [6, 7]. We would like to point out that the issue of

causality is rather nontrivial in the theories with superluminal propagation and requires

further investigation. For example, the Cauchy problem is well-posed not for all initial

data [10, 11, 9, 8].

One of the interesting issues is the behavior of noncanonical scalar fields in the neigh-

borhood of black holes [12, 14, 13] and in this paper we investigate the consequences of

the superluminal propagation of such fields in the black hole background. In particular,

we will consider a Lorentz invariant scalar field theory with Lagrangian which allows the

superluminal propagation of perturbations during accretion onto black hole. Assuming

that the backreaction of the scalar field on the metric is negligible we will find first the

analytic solution describing the spherically symmetric accretion of the scalar field. After

that we investigate the propagation of the perturbations in this background.
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2. Model

Let us consider a scalar field with the action

Sφ =

∫
d4x
√−gp(X), (2.1)

where the Lagrangian density is given by

p(X) = α2

[√
1 +

2X

α2
− 1

]
− Λ. (2.2)

It depends only on X ≡ 1
2∇µφ∇µφ, and α and Λ are free parameters of the theory.

Throughout the paper ∇µ denotes the covariant derivative and we use the natural units in

which G = ~ = c = 1. The kinetic part of the action is the same as in [7] and for small

derivatives, that is, in the limit 2X ¿ α2, it describes the usual massless free scalar field.

One can prove that the theory, described by (2.2) is ghost-free.

The equation of motion for the scalar field is

Gµν∇µ∇νφ = 0, (2.3)

where the induced metric Gµν is given by

Gµν ≡ p,Xgµν + p,XX∇µφ∇νφ, (2.4)

and p,X ≡ ∂p/∂X. This equation is hyperbolic and its solutions are stable with respect to

high frequency perturbations provided (1 + 2Xp,XX/p,X) > 0 [6, 10, 11]. This condition is

always satisfied in the model under consideration. It is well known that, if ∇νφ is timelike

(that is, X > 0 in our convention), then the field described by (2.2) is formally equivalent

to a perfect fluid with the energy density ε(X) = 2Xp,X(X)−p(X), the pressure p = p(X)

and the four-velocity

uµ =
∇µφ√

2X
. (2.5)

The effective sound speed of perturbations is given by

c2s ≡
∂p

∂ε
= 1 +

2X

α2
. (2.6)

and for X > 0 it always exceeds the speed of light. For the further considerations it occurs

to be convenient to express the energy density and pressure in terms of this speed of sound,

namely,

ε = α2(1− c−1
s ) + Λ, p = α2(cs − 1)− Λ. (2.7)

It is easy to see that the Null Energy Condition is valid and hence the black hole area

theorem [15] holds.

– 2 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
1

1 1.5 2

1

2

3

4

5

PSfrag replacements

r/rg
x∗

c2
s

ε−Λ
α2

Figure 1: For the background solution in the case c2
∞ = 5/4 the squared sound speed (red) and the

normalized energy density, (ε−Λ)/α2, (blue) are shown as functions of radial coordinate x ≡ r/rg .
The sound horizon r∗/rg = 4/5 is located inside the Schwarzschild horizon.

3. Background solution

First we will find a stationary spherically symmetric background solution for the scalar

field falling onto a Schwarzschild black hole. To describe the black hole we use the ingoing

Eddington-Finkelstein coordinates, in which the metric takes the form:

ds2 = f(r)dV 2 − 2dV dr − r2dΩ, (3.1)

where f(r) ≡ 1 − rg/r and rg ≡ 2M is the gravitational radius of the black hole. The

coordinate V is related to the Schwarzschild coordinates t and r as: V ≡ t+r+rg ln |r/rg−
1|. Let us assume that the infalling field has a negligible influence on the metric, that is,

we consider an accretion of the test fluid in the given gravitational field. The requirement

of stationarity implies the following ansatz for the solution:

φ(V, x) = α
√
c2∞ − 1

(
V + rg

∫
F (x)dx

)
, (3.2)

where x ≡ r/rg and c∞ is the speed of sound at infinity. The overall factor in (3.2) is chosen

to recover the cosmological solution at infinity: φ(V, x) → αt
√
c2∞ − 1 and rg in front of

the integral is for the further convenience. The function F (x) must be determined solving

equations of motion for appropriate boundary conditions. Substituting (3.2) into (2.3) and

integrating over r we obtain the following equation for the function F (x):

(fF + 1)x2

√
1− (fF 2 + 2F ) (c2∞ − 1)

=
B

c4∞
, (3.3)

where B is the constant of integration. The solution of (3.3), which is nonsingular at the

black hole horizon, is given by:

F (x) =
1

f

(
B

√
c2∞ + f − 1

fx4c8∞ +B2 (c2∞ − 1)
− 1

)
. (3.4)
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The speed of sound speed can then be found using (3.4), (3.2) and (

c2s =
x3c8∞

(
xc2∞ − 1

)

(x− 1)x3c8∞ +B2 (c2∞ − 1)
. (3.5)

Note that the speed of sound becomes infinite at some x ≡ xsing and this singularity is

physical if the real regular solution (3.4) exists for all x > xsing.

A constant of integration B, entering (3.4) and (3.5), determines the energy flux falling

onto the black hole. To fix it we have to find the solution which is non-singular on the

sound horizon and outside it. Below we consider the propagation of perturbations and find

how the position of the sound horizon depend on B. Then, given c∞, and comparing the

positions of the singularities and the sound horizon we determine the unique value for B.

4. Small perturbations

Let us now consider the small perturbations around background (3.2), (equation (2.3)

satisfy the following equation (see, e.g. [10, 11]):

G̃µνη
µην = 0, (4.1)

where G̃µν is the matrix inverse to Gµν , that is, GµνG̃νσ = δµσ , and it is calculated for

the background solution (3.2), (3.4). The vector ηµ describes the propagation of the wave

front. After lengthy, but straightforward calculations, we obtain from (4.1) and (2.4) the

following differential equation for the characteristics η±(x) ≡ dV/dx:

η± =
1

f
+

1

ξ±
, (4.2)

where

ξ± = ±f
√
c2∞ −

1

x

√
B2(c2∞ − 1) + c8∞x4f

c4∞x2f ∓B(c2∞ − 1)
. (4.3)

It is worth mentioning that the equation ξ± = dx/dt determines the propagation of wave

front in the Schwarzschild coordinates x and t.

Equation (4.2) does not specify the direction of the propagation completely. In addition

to the value of dV/dx one has to choose a cone of future and a cone of past for every event.

However, the position of the past and the future lightcones helps us to fix the past and

the future cones for the scalar field perturbations, or in other words, for the ”sound”.

Using characteristics (4.2) we then select uniquely the sonic cones as follows: i) the past

and the future sonic cones should not have overlapping regions; ii) the future sonic cone

contains the future light cone, while the past sonic cone contains the past light cone.

This last property can be justified because it holds at the spatial infinity and the sonic

characteristics (4.2) nowhere coincide with the radial light geodesics (otherwise for the

sonic signal ds2 would vanish somewhere and this is obviously not true). As a result we

conclude: a signal propagating along η+ points in the positive V−direction, while a signal

corresponding to η− points in the negative V−direction (see figure 2).

– 4 –
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Figure 2: In the Eddington-Finkelstein coordinates the emission of a sound signal from the falling

spacecraft is shown. The blue cones correspond to the future light cones and the red cones are

the future sonic cones (4.2). The black curve represents the world line obtained numerically from

eqs. (2.5), (3.2), (3.4) for the spacecraft which moves together with a falling background field.

Being between the the Schwarzschild (r = rg) and sound (r = r∗) horizons the spacecraft emits an

acoustic signal (shown by red) which reaches the distant observer in finite time. The trajectory of

the signal is obtained by the numerical integration of eq. (4.2).

Having calculated the propagation vectors we can find the sonic horizon. The sonic

horizon is defined as a surface, where the length of the spatial velocity vector is equal to

the speed of sound. Outside this surface the signals can reach the spatial infinity, while

sound cannot escape from inside because it is trapped by the supersonic motion of a fluid

(in the same way as light is trapped inside the event horizon by the gravitational field).

The acoustic signal directed out of the black hole corresponds to η+ and therefore the

sound horizon is located at x ≡ x∗ where η+ ≡ (dV/dx)+ becomes infinite (see figure 2).

Now we can fix a constant of integration B, entering (3.2), (3.4). We simply demand that

in the physically occurring situation there exists no singularity on the sound horizon and

outside of it. This procedure is similar to that one arising in the problem of perfect fluid

accretion where the physical solution does not diverge at the event horizon (see, e.g. [16]).

Thus, fixing B reduces to the analysis of the mutual location of xsing and x∗. After some

calculations we find the following:

• For B 6= 1 either the physical singularity coincides with the sound horizon or the

speed of sound becomes imaginary (this means absolute instability) within some

region outside the singular surface, for x > xsing. In both cases the solution is

nonphysical.

• For B = 1 and c2
∞ > 4/3 the speed of sound becomes imaginary before reaching of

sound horizon or singularity. This solution is also nonphysical.

– 5 –
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• For B = 1 and c2
∞ < 4/3 the sound horizon is located at x∗ = 1/c2∞ and the

singularity is hidden inside the sound horizon, xsing < x∗. This is the only physically

relevant solution we are searching for.

Thus, we have to set B = 1 in (3.2), (3.4) and this ends the constructing of the

background.

Before we turn to the discussion of the signals propagation we will briefly analyze the

validity of the stationarity approximation when the backreaction can be neglected. Having

fixed B the rate of the accretion can be easily evaluated as (see e.g. [14]):

Ṁ = 4πM2α2(c2∞ − 1)/c4
∞. (4.4)

It is clear that for any fixed value of c∞ we can choose a small enough α, so that the

energy flux onto black hole is negligible. The propagation of perturbations (4.2) on the

background (3.2) does not depend on α, but only on c∞. Therefore, we can always take

sufficiently small α in (2.2) to ensure that during the gedanken experiment with sending

signals from the interior of a black hole the background solution remains nearly unchanged.

After we have found the physically relevant background solution we will discuss whether

the acoustic signals can really escape from the interior of the black hole. This becomes

possible because in the case under consideration the sound horizon (x∗ = 1/c2∞) is located

inside the Schwarzschild radius. As long as the signals are emitted at large enough x,

namely, at x > x∗, they reach the spatial infinity propagating along η+. For example, at

the event horizon we have:

η±H =
1

2

(
c4∞ ± 1

)2

c2∞ − 1
. (4.5)

The propagation vector η+H is positive and so signals could freely penetrate the Schwarz-

schild horizon and move outside the black hole. The figure 2 shows how the acoustic signals

go out from the interior of a black hole.

Let us calculate the redshift of the emitted signal. Suppose that a spacecraft moves to-

gether with the falling background field (such that in the spacecraft’s system of coordinates

∇φ0 = 0) and sends the acoustic signals with the frequency ω0. After a simple geometrical

exercise in the plane (V, x) one can obtain that an observer at rest at the spatial infinity

will detect these signals at the frequency:

ω∞ = ω0
c8∞x

3(x− 1) + c2
∞ − 1

x2c4∞(x2c4∞ + 1)
. (4.6)

Note that the ratio ω∞/ω0 is finite for any x > x∗ and it vanishes for x = x∗.

5. Conclusion

The main result of this paper can be summarized as follows: if there exist a specific

Born-Infeld type fields, then during accretion of these fields onto black hole one can send

information from the interior of the black hole. We would like to stress that this result has

a classical origin and no quantum phenomena are involved. The discussed effect changes

– 6 –
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the universal meaning of the Schwarzschild horizon as an event horizon and may have

important consequences for the thermodynamics of black holes.

We consider the present work as simply an illustration of a concept. The particular

theory examined does not have any justification from the point of view of particle physics.

However, for a wide class of nonlinear theories the situation can be similar and therefore

it is quite possible that the information can really be send from inside the black hole.

Also we would like to point out that in our model the cosmic censorship hypothesis is

holds because the singularity is hidden by the sound horizon. The null energy condition is

not violated as well. Hence the Schwarzschild horizon never decreases.

Note: the recent paper [17] deals with thermodynamics of black holes in the presence

of superluminal fields. However, the model analyzed in this paper is completely different

from ours, namely, the authors of [17] have considered two kinetically coupled fields, one

of which is the ghost condensate [4].

Note added in proof: the similar possibility of sending signals from the inside of a

black hole opens in bigravity theories [18].
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